Evaluation of preferred binding regions on ubiquitin and IgG1 FC for interacting with multimodal cation exchange resins using DEPC labeling/mass spectrometry

Author:

Dhingra Kabir12,Gudhka Ronak B.3,Cramer Steven M.12ORCID

Affiliation:

1. Howard P. Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York USA

2. Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York USA

3. Process Development, Drug Substance Biologics Amgen Cambridge Massachusetts USA

Abstract

AbstractThere is significant interest in identifying the preferred binding domains of biological products to various chromatographic materials. In this work, we develop a biophysical technique that uses diethyl pyrocarbonate (DEPC) based covalent labeling in concert with enzymatic digestion and mass spectrometry to identify the binding patches for proteins bound to commercially available multimodal (MM) cation exchange chromatography resins. The technique compares the changes in covalent labeling of the protein in solution and in the bound state and uses the differences in this labeling to identify residues that are sterically shielded upon resin binding and, therefore, potentially involved in the resin binding process. Importantly, this approach enables the labeling of many amino acids and can be carried out over a pH range of 5.5–7.5, thus enabling the protein surface mapping at conditions of interest in MM cation exchange systems. The protocol is first developed using the model protein ubiquitin and the results indicate that lysine residues located on the front face of the protein show dramatic changes in DEPC labeling while residues present on other regions have minimal or no reductions. This indicates that the front face of ubiquitin is likely involved in resin binding. In addition, surface property maps indicate that the hypothesized front face binding region consists of overlapping positively charged and hydrophobic patches. The technique is then employed with an IgG1 FC and the results indicate that residues on the CH2–CH3 interface and the hinge are significantly sterically shielded upon binding to the resin. Further, these regions are again associated with significant overlap of positively charged and hydrophobic patches. On the other hand, while, residues on the CH2 and the front face of the IgG1 FC also exhibited some changes in DEPC labeling upon binding, these regions have less distinct charged and hydrophobic patches. Importantly, the hypothesized binding patches identified for both ubiquitin and FC using this approach are shown to be consistent with previously reported NMR studies. In contrast to NMR, this new approach enables the identification of preferred binding regions without the need for isotopically labeled proteins or chemical shift assignments. The technique developed in this work sets the stage for the evaluation of the binding domains of a wide range of biological products to chromatographic surfaces, with important implications for designing biomolecules with improved biomanufacturability properties.

Funder

Merck Sharp and Dohme

Bio-Rad Laboratories

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3