Exploring preferred binding domains of IgG1 mAbs to multimodal adsorbents using a combined biophysics and simulation approach

Author:

Dhingra Kabir12,Sinha Imee12,Snyder Mark3,Roush David4,Cramer Steven M.12ORCID

Affiliation:

1. Howard P. Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York USA

2. Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York USA

3. Process Chemistry Division Bio‐Rad Laboratories Hercules California USA

4. Process R&D Merck &Co., Inc. Rahway New Jersey USA

Abstract

AbstractIn this work, we employ a recently developed biophysical technique that uses diethylpyrocarbonate (DEPC) covalent labeling and mass spectrometry for the identification of mAb binding patches to two multimodal cation exchange resins at different pH. This approach compares the labeling results obtained in the bound and unbound states to identify residues that are sterically shielded and thus located in the mAb binding domains. The results at pH 6 for one mAb (mAb B) indicated that while the complementarity determining region (CDR) had minimal interactions with both resins, the FC domain was actively involved in binding. In contrast, DEPC/MS data with another mAb (mAb C) indicated that both the CDR and FC domains were actively involved in binding. These results corroborated chromatographic retention data with these two mAbs and their fragments and helped to explain the significantly stronger retention of both the intact mAb C and its Fab fragment. In contrast, labeling results with mAb C at pH 7, indicated that only the CDR played a significant role in resin binding, again corroborating chromatographic data. The binding domains identified from the DEPC/MS experiments were also examined using protein surface hydrophobicity maps obtained using a recently developed sparse sampling molecular dynamics (MD) approach in concert with electrostatic potential maps. These results demonstrate that the DEPC covalent labeling/mass spectrometry technique can provide important information about the domain contributions of multidomain proteins such as monoclonal antibodies when interacting with multimodal resins over a range of pH conditions.

Funder

Bio-Rad Laboratories

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3