Using a variety of machine learning approaches to predict and map topsoil pH of arable land on a regional scale

Author:

Sun Yueqi1ORCID,Sun Xiaomei2,Wu Zhenfu3,Yan Junying2,Ma Chongyang4,Zhang Jingyi4,Zhao Yanfeng1,Chen Jie1

Affiliation:

1. School of Agricultural Sciences Zhengzhou University Zhengzhou China

2. Henan Provincial Station of Soil and Fertilizer Zhengzhou China

3. School of Public Administration Zhengzhou University Zhengzhou China

4. School of Ecology and Environment Zhengzhou University Zhengzhou China

Abstract

AbstractIn order to accurately predict soil properties, various machine learning (ML) approaches and hybrid models constructed by integrating ML into regression kriging framework were used to predict and map arable land topsoil pH in Henan province, central China. Random forest (RF), cubist (Cu), support vector machine, artificial neural network, multiple linear regression, classification and regression trees (CART) and their hybrid models were compared for pH accuracy prediction. Among all standalone ML models, RF had the best predictive performance, in terms of the metrics employed in this study, followed by Cu, and CART was the worst. Compared with their ML counterparts, hybrid models could improve the accuracy of topsoil pH prediction to various extents. The accuracy improvement of the hybrid models constructed based on the simple ML was much greater than that based on the complex ensemble ML. Except for artificial neural network kriging , there was no significant difference between different hybrid models in the predicted results of topsoil pH. The outputs from the best predictive models showed that weak acidic soils and weak alkaline soils were the dominant arable soils in the study region, accounting for more than 30% and more than 50% of the total arable land area respectively, the topsoil pH of arable land in the north of the study area is generally higher than that in the south. Boruta variable selection revealed that altitude, climatic covariates closely related to soil moisture availability and some soil properties were the most critical factors affecting and controlling the topsoil pH of arable land.

Publisher

Wiley

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3