Improving soil organic carbon mapping in farmlands using machine learning models and complex cropping system information

Author:

Ou Jianxiong,Wu Zihao,Yan Qingwu,Feng Xiangyang,Zhao Zilong

Abstract

AbstractObtaining accurate spatial maps of soil organic carbon (SOC) in farmlands is crucial for assessing soil quality and achieving precision agriculture. The cropping system is an important factor that affects the soil carbon cycle in farmlands, and different agricultural managements under different cropping systems lead to spatial heterogeneity of SOC. However, current research often ignores differences in the main controlling factors of SOC under different cropping systems, especially when the cropping pattern is complex, which is not conducive to farmland zoning management. This study aims to (i) obtain the spatial distribution map of six cropping systems by using multi-phase HJ-CCD satellite images; (ii) explore the stratified heterogeneous relationship between SOC and environmental variables under different cropping systems by using the Cubist model; and (iii) predict the spatial map of SOC. The Xiantao, Tianmen, and Qianjiang cities, which are the core agricultural areas of the Jianghan Plain, were selected as the study area. Results showed that the SOC content in rice–wheat rotation was the highest among the six cropping systems. The Cubist model outperformed random forest, ordinary kriging, and multiple linear regression in SOC mapping. The results of the Cubist model showed that cropping system, climate, soil attributes, and vegetation index were important influencing factors of SOC in farmlands. The main controlling factors of SOC under different cropping systems were different. Specifically, summer crop types had a greater influence on spatial variations in SOC than winter crops. Paddy–upland rotation was more affected by river distance and NDVI, while upland–upland rotation was more affected by irrigation-related factors. This work highlights the differentiated main controlling factors of SOC under different cropping systems and provides data support for farmland zoning management. The Cubist model can improve the prediction accuracy of SOC under complex cropping systems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3