Establishing peat‐forming plant communities: A comparison of wetland reclamation methods in Alberta's oil sands region

Author:

Borkenhagen Andrea1ORCID,Cooper David J.1,House Melissa2,Vitt Dale H.2

Affiliation:

1. Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA

2. School of Biological Sciences—Plant Biology Southern Illinois University Carbondale Illinois USA

Abstract

AbstractThe Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post‐mining landscape. To identify effective approaches for establishing peat‐forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis‐dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat‐forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%–160% cover respectively) occurred where the summer water level was between −10 and −40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat‐forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.

Funder

Colorado State University

Publisher

Wiley

Subject

Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3