Evaluating impacts of non‐native submerged aquatic vegetation on native nekton

Author:

Wellman Emory H.1ORCID,Trackenberg Stacy N.1ORCID,Gilliland Virginia A.2,Titus Ellen F.3,Gittman Rachel K.14ORCID,McCoy Michael W.3

Affiliation:

1. Department of Biology East Carolina University Greenville North Carolina USA

2. Department of Biology Davidson College Davidson North Carolina USA

3. Florida Atlantic University's Harbor Branch Oceanographic Institute Fort Pierce Florida USA

4. Coastal Studies Institute, East Carolina University Wanchese North Carolina USA

Abstract

AbstractThe introduction and spread of non‐native species restructure native ecosystems and can be particularly impactful when invaders are ecosystem engineers or habitat‐forming species. In coastal, estuarine, and marine systems, submerged aquatic vegetation (SAV), like macroalgae and seagrasses, form key habitats for nekton, serving as nurseries, foraging grounds, and reproduction sites. If non‐native ecosystem engineers can provide sufficient structure and/or resources, they may exert a neutral or positive effect on organisms occupying higher trophic positions. As such, we hypothesized that nekton response to non‐native SAV species may be neutral or positive. We performed a quantitative meta‐analysis to quantify impacts of non‐native SAV on native crabs, fishes, and shrimps. We extracted data from 35 studies and evaluated 11 response metrics related to facilitation (e.g., habitat use and foraging), restricting our analysis to studies that compared at least one of these metrics in nekton from co‐occurring native and non‐native SAV habitats in marine, coastal, or estuarine systems. We found that nekton abundance, species richness, and biomass were the most assessed metrics of nekton performance. Our pooled data revealed differential results among response metrics, with nekton growth and reproduction enhanced in non‐native habitats and species richness enhanced in a native setting. The mean effect sizes for all other nekton response metrics, including abundance, had 95% CIs that overlapped zero, indicating no difference in response between native and non‐native SAV. For many endpoints, limited sample sizes prevented robust inferences, but they also highlighted areas where more research is needed in future studies. Non‐native species have the potential to restructure the systems they invade. Our results lend support to the relative trophic position hypothesis, indicating that non‐native habitat formers may facilitate native organisms in higher trophic levels. We identify research gaps that may guide future studies and allow for a more comprehensive understanding of responses to non‐native ecosystem engineers.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3