Regulating Li electrodeposition by constructing Cu–Sn nanotube thin layer for reliable and robust anode‐free all‐solid‐state batteries

Author:

Kim Jaeik1,Lee Seungwoo1ORCID,Kim Jeongheon1,Park Joonhyeok1,Lee Hyungjun1,Kwon Jiseok1,Sun Seho2,Choi Junghyun3,Paik Ungyu1,Song Taeseup14

Affiliation:

1. Department of Energy Engineering Hanyang University Seoul Republic of Korea

2. School of Chemical Engineering Yeungnam University Gyeongsan Republic of Korea

3. School of Chemical, Biological and Battery Engineering Gachon University Seongnam Republic of Korea

4. Department of Battery Engineering Hanyang University Seoul Republic of Korea

Abstract

AbstractAnode‐free all‐solid‐state batteries (AF‐ASSBs) have received significant attention as a next‐generation battery system due to their high energy density and safety. However, this system still faces challenges, such as poor Coulombic efficiency and short‐circuiting caused by Li dendrite growth. In this study, the AF‐ASSBs are demonstrated with reliable and robust electrochemical properties by employing Cu–Sn nanotube (NT) thin layer (~1 µm) on the Cu current collector for regulating Li electrodeposition. LixSn phases with high Li‐ion diffusivity in the lithiated Cu–Sn NT layer enable facile Li diffusion along with its one‐dimensional hollow geometry. The unique structure, in which Li electrodeposition takes place between the Cu–Sn NT layer and the current collector by the Coble creep mechanism, improves cell durability by preventing solid electrolyte (SE) decomposition and Li dendrite growth. Furthermore, the large surface area of the Cu–Sn NT layer ensures close contact with the SE layer, leading to a reduced lithiation overpotential compared to that of a flat Cu–Sn layer. The Cu–Sn NT layer also maintains its structural integrity owing to its high mechanical properties and porous nature, which could further alleviate the mechanical stress. The LiNi0.8Co0.1Mn0.1O2 (NCM)|SE|Cu–Sn NT@Cu cell with a practical capacity of 2.9 mAh cm−2 exhibits 83.8% cycle retention after 150 cycles and an average Coulombic efficiency of 99.85% at room temperature. It also demonstrates a critical current density 4.5 times higher compared to the NCM|SE|Cu cell.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3