High‐Performance All‐Solid‐State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide‐Based Solid Electrolytes

Author:

Kim Jeongheon1,Kim Min Ji23,Kim Jaeik1,Lee Jin Woong23,Park Joonhyeok1,Wang Sung Eun2,Lee Seungwoo1,Kang Yun Chan3,Paik Ungyu1ORCID,Jung Dae Soo2ORCID,Song Taeseup1ORCID

Affiliation:

1. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea

2. Energy and Environmental Division Korea Institute of Ceramic Engineering and Technology Jinju Gyeongnam 52851 Republic of Korea

3. Department of Materials Science and Engineering Korea University Anam‐Dong Seongbuk‐Gu Seoul 136–713 Republic of Korea

Abstract

AbstractAll‐solid‐state batteries (ASSBs) are considered the ultimate next‐generation rechargeable batteries due to their high safety and energy density. However, poor Li‐ion kinetics caused by the inhomogeneous distribution of the solid electrolytes (SEs) and complex chemo‐mechanical behaviors lead to poor electrochemical properties. In this study, LiNi0.8Co0.1Mn0.1O2 (NCM) (core) – Li6PS5Cl (LPSCl) SEs (shell) particles (NCM@LPSCl) are prepared by a facile mechano‐fusion method to improve the electrochemical properties and increase the energy density of ASSBs. The conformally coated thin SEs layer on the surface of NCM enables homogeneous distribution of SEs in overall electrode and intimate physical contact with cathode material even under volume change of cathode material during cycling, which leads to the improvement in Li‐ion kinetics without the increase in solid electrolyte content. As a result, an ASSBs employing NCM@LPSCl with 4 mAh cm−1 specific areal capacity exhibits robust electrochemical properties, including the improved reversible capacity (163.1 mAh g−1), cycle performance (90.0% after 100 cycles), and rate capability (discharge capacity of 152.69, 133.80, and 100.97 mAh g−1 at 0.1, 0.2, and 0.5 C). Notably, ASSBs employing NCM@LPSCl composite show reliable electrochemical properties with a high weight fraction of NCM (87.3 wt%) in the cathode.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3