Experimental and numerical study on failure mechanisms of bone simulants subjected to projectile impact

Author:

Żochowski Paweł1,Cegła Marcin1,Berent Jarosław23,Grygoruk Roman4,Szlązak Karol5,Smędra Anna2

Affiliation:

1. Military Institute of Armament Technology Zielonka Poland

2. Department of Forensic Medicine Medical University of Lodz Łódź Poland

3. Department of Criminal Proceedings and Forensics Faculty of Law and Administration at the University of Łódź Łódź Poland

4. Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering Warsaw University of Technology Warsaw Poland

5. Faculty of Materials Science and Engineering Warsaw University of Technology Warsaw Poland

Abstract

AbstractAnalyses of the human bones failure mechanisms under projectile impact conditions can be made through performing of a large number of ballistic trials. But the amount of data that can be collected during ballistic experiments is limited due to the high dynamics of the process and its destructive character. Numerical analyses may support experimental methodologies allowing to better understand the principles of the phenomenon. Therefore, the main aim of the study was to create and to verify a numerical model of commercially available synthetic bone material—Synbone®. The model could be used in the future as a supporting tool facilitating forensic studies or designing processes of personal protection systems (helmets, bulletproof vests, etc.). Although Synbone® is commonly used in the ballistic experiments, the literature lacks reliable numerical models of this material. In order to define a numerical model of Synbone®, mechanical experiments characterizing the response of the material to the applied loads in a wide range of strains and strain rates were carried out. Based on the mechanical tests results, an appropriate material model was selected for the Synbone® composite and the values of constants in its equations were determined. Material characterization experiments were subsequently reproduced with numerical simulations and a high correlation of the results was obtained. The final validation of the material model was based on the comparison of the ballistic impact experiments and simulation results. High similarity obtained (relative error lower than 10%) demonstrates that the numerical model of Synbone® material was properly defined.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3