Deep learning‐based survival prediction of brain tumor patients using attention‐guided 3D convolutional neural network with radiomics approach from multimodality magnetic resonance imaging

Author:

Mazher Moona1ORCID,Qayyum Abdul2,Puig Domenec1,Abdel‐Nasser Mohamed3

Affiliation:

1. Departament d'Enginyeria Informatica i Matemátiques Universitat Rovira i Virgili Tarragona Spain

2. National Heart and Lung Institute, Imperial College London London UK

3. Electronics and Communication Engineering Section, Electrical Engineering Department Aswan University Aswan Egypt

Abstract

AbstractAutomatic survival prediction of gliomas from brain magnetic resonance imaging (MRI) volumes is an essential step for a patient's prognosis analysis. Radiomics research delivers beneficial feature information from MRI imaging which is substantially required by clinicians and oncologists for predicting disease prognosis for precise surgical treatment and planning. In recent years, the success of deep learning has been vast in the field of medical imaging, and it shows state‐of‐the‐art performance in applications like segmentation, classification, regression, and detection. Therefore, in this paper, we proposed a collective method using deep learning and radiomics techniques for the survival prediction of brain tumor patients. We first propose a hierarchical channel attention (HAM) module and a multi‐scale‐aware feature enhancement (MSAFE) to efficiently fuse adjacent hierarchical features in the proposed segmentation model. After segmentation, deep/latent features (LCNN) are extracted from the bottom layer of the proposed segmentation model. Later, we extracted selected radiomics features (histogram, location, and shape) using input images and segmented masks from the proposed segmentation model. Further, the 3D deep learning regressor has been trained for 3D regressor‐based deep feature extraction. We proposed the method of overall survival prediction for the brain tumor patients by combining all the meaningful features including clinical features (age) that also favorably contribute to the survival days prediction for the glioma's patients. To predict the survival days for each patient, the selected features are trained to analyze the performance of various regression techniques like random forest (RF), decision tree (DT), and XGBoost. Our proposed combined feature‐based method achieved the highest performance for survival days prediction over the state‐of‐the‐art methods. We also perform extensive experiments to show the effectiveness of each feature extraction method. The experimental results infer that deep learning‐based features along with radiomic features and clinical features are truly vital paradigms to estimate survival days.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3