A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images

Author:

Almalki Yassir Edrees,Qayyum AbdulORCID,Irfan MuhammadORCID,Haider Noman,Glowacz AdamORCID,Alshehri Fahad Mohammed,Alduraibi Sharifa K.ORCID,Alshamrani Khalaf,Alkhalik Basha Mohammad AbdORCID,Alduraibi AlaaORCID,Saeed M. K.,Rahman SaifurORCID

Abstract

The Coronavirus disease 2019 (COVID-19) is an infectious disease spreading rapidly and uncontrollably throughout the world. The critical challenge is the rapid detection of Coronavirus infected people. The available techniques being utilized are body-temperature measurement, along with anterior nasal swab analysis. However, taking nasal swabs and lab testing are complex, intrusive, and require many resources. Furthermore, the lack of test kits to meet the exceeding cases is also a major limitation. The current challenge is to develop some technology to non-intrusively detect the suspected Coronavirus patients through Artificial Intelligence (AI) techniques such as deep learning (DL). Another challenge to conduct the research on this area is the difficulty of obtaining the dataset due to a limited number of patients giving their consent to participate in the research study. Looking at the efficacy of AI in healthcare systems, it is a great challenge for the researchers to develop an AI algorithm that can help health professionals and government officials automatically identify and isolate people with Coronavirus symptoms. Hence, this paper proposes a novel method CoVIRNet (COVID Inception-ResNet model), which utilizes the chest X-rays to diagnose the COVID-19 patients automatically. The proposed algorithm has different inception residual blocks that cater to information by using different depths feature maps at different scales, with the various layers. The features are concatenated at each proposed classification block, using the average-pooling layer, and concatenated features are passed to the fully connected layer. The efficient proposed deep-learning blocks used different regularization techniques to minimize the overfitting due to the small COVID-19 dataset. The multiscale features are extracted at different levels of the proposed deep-learning model and then embedded into various machine-learning models to validate the combination of deep-learning and machine-learning models. The proposed CoVIR-Net model achieved 95.7% accuracy, and the CoVIR-Net feature extractor with random-forest classifier produced 97.29% accuracy, which is the highest, as compared to existing state-of-the-art deep-learning methods. The proposed model would be an automatic solution for the assessment and classification of COVID-19. We predict that the proposed method will demonstrate an outstanding performance as compared to the state-of-the-art techniques being used currently.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference52 articles.

1. World Health Organization, Coronavirus 2020https://www.who.int/health-topics/coronavirus#tab=tab_1

2. Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: a modelling study

3. A Novel Coronavirus from Patients with Pneumonia in China, 2019

4. Coronavirus Symptoms and How to Protect Yourself: What We Know 2020https://www.wsj.com/articles/what-we-know-about-the-coronavirus-11579716128?mod=theme_coronavirus-ribbon

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3