Snowmelt progression drives habitat selection and vegetation disturbance by an Arctic avian herbivore

Author:

Eischeid Isabell1234ORCID,Madsen Jesper3ORCID,Ims Rolf A.1ORCID,Nolet Bart A.56ORCID,Pedersen Åshild Ø.2ORCID,Schreven Kees H. T.56ORCID,Soininen Eeva M.1ORCID,Yoccoz Nigel G.1ORCID,Ravolainen Virve T.2ORCID

Affiliation:

1. Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway

2. Norwegian Polar Institute, Fram Centre Tromsø Norway

3. Department of Ecoscience Aarhus University Aarhus C Denmark

4. Norwegian Institute of Bioeconomy Research (NIBIO) Kapp Norway

5. Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands

6. Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands

Abstract

AbstractArctic tundra vegetation is affected by rapid climatic change and fluctuating herbivore population sizes. Broad‐billed geese, after their arrival in spring, feed intensively on belowground rhizomes, thereby disturbing soil, mosses, and vascular plant vegetation. Understanding of how springtime snowmelt patterns drive goose behavior is thus key to better predict the state of Arctic tundra ecosystems. Here, we analyzed how snowmelt progression affected springtime habitat selection and vegetation disturbance by pink‐footed geese (Anser brachyrhynchus) in Svalbard during 2019. Our analysis, based on GPS telemetry data and field observations of geese, plot‐based assessments of signs of vegetation disturbance, and drone and satellite images, covered two spatial scales (fine scale: extent 0.3 km2, resolution 5 cm; valley scale: extent 30 km2, resolution 10 m). We show that pink‐footed goose habitat selection and signs of vegetation disturbance were correlated during the spring pre‐breeding period; disturbances were most prevalent in the moss tundra vegetation class and areas free from snow early in the season. The results were consistent across the spatial scales and methods (GPS telemetry and field observations). We estimated that 23.4% of moss tundra and 11.2% of dwarf‐shrub heath vegetation in the valley showed signs of disturbance by pink‐footed geese during the study period. This study demonstrates that aerial imagery and telemetry can provide data to detect disturbance hotspots caused by pink‐footed geese. Our study provides empirical evidence to general notions about implications of climate change and snow season changes that include increased variability in precipitation.

Funder

Aarhus Universitet

Norsk Polarinstitutt

Tromsø Forskningsstiftelse

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3