New mitogenomes from the genus Cricotopus (Diptera: Chironomidae, Orthocladiinae): Characterization and phylogenetic implications

Author:

Li Shu‐Yi12,Chen Meng‐Han12,Sun Li12,Wang Rui‐Hao12,Li Chen‐Hong12,Gresens Susan3,Li Zhao4,Lin Xiao‐Long12ORCID

Affiliation:

1. Engineering Research Center of Environmental DNA and Ecological Water Health Assessment Shanghai Ocean University Shanghai China

2. Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution Shanghai Ocean University Shanghai China

3. Department of Biological Sciences Towson University Towson Maryland USA

4. China National Environmental Monitoring Centre Beijing China

Abstract

AbstractCricotopus is a large and diverse genus of non‐biting midges composed of several subgenera. Complete mitogenome sequences are available for very few Cricotopus species. The subgenus Pseudocricotopus unites species with unusual morphological structures in adult male and pupal stages, however, molecular methods are needed to verify the placement of this subgenus within Cricotopus. We obtained mitogenomes of C. (Pseudocricotopus) cf. montanus and nine other Cricotopus species for phylogenetic analysis, coupled with two Rheocricotopus species and one Synorthocladius species as outgroups. The structure of the mitogenome was similar among these Cricotopus species, exhibiting A+T bias and retaining ancestral gene order. Mutation rate, estimated as Ka/Ks, varied among genes, and was highest for ATP8 and lowest for COI. The phylogenetic relationships among species of Cricotopus, Rheocricotopus and Synorthocladius was reconstructed using Bayesian inference and maximum likelihood estimation. The phylogenetic trees confirmed placement of subgenus Pseudocricotopus, represented by Cricotopus cf. montanus, within Cricotopus. Our study increases the library of chironomid mitogenomes and provides insight into the properties of their constituent genes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,General Medicine,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3