Unraveling the potential and constraints associated with corn steep liquor as a nutrient source for industrial fermentations

Author:

Wahjudi Sekar Mayang W.1ORCID,Petrzik Thomas1,Oudenne Françoise2,Lera Calvo Concepción2,Büchs Jochen1ORCID

Affiliation:

1. AVT—Biochemical Engineering RWTH Aachen University Aachen Germany

2. Cargill R&D Centre Europe BVBA Vilvoorde Belgium

Abstract

AbstractCostly complex media components such as yeast extract and peptone are still widely used in industrial bioprocesses, despite their ill‐defined composition. Side stream products such as corn steep liquor (CSL) present a compelling economical alternative that contains valuable nutrients required for microbial growth, that is, nitrogen and amino acids, but also vitamins, trace elements, and other minerals. However, as a side stream product, CSL may be subject to batch‐to‐batch variations and compositional heterogeneity. In this study, the Respiration Activity MOnitoring System designed for shake flasks (RAMOS) and 96‐well microtiter plates (μTOM) were applied to investigate the potential and constraints of CSL utilization for two model microorganisms: E. coli and B. subtilis. Considering the dry substance content of complex nutrients involved, CSL‐based media are more efficient in biomass production than the common lysogeny broth (LB) medium, containing 5 g/L yeast extract, 10 g/L peptone, and 5 g/L NaCl. At a glucose to CSL (glucose/CSL, g/g) ratio of 1/1 (g/g) and 2/1 (g/g), a secondary substrate limitation occurred in E. coli and B. subtilis cultivations, respectively. The study sheds light on differences in the metabolic activity of the two applied model organisms between varying CSL batches, which relate to CSL origin and production process, as well as the effect of targeted nutrient supplementation. Through a targeted nutrient supplementation, the most limiting component of the CSL‐glucose medium used for these applied model microorganisms was identified to be ammonium nitrogen. This study proves the suitability of CSL as an alternative nutrient source for E. coli and B. subtilis. The RAMOS and μTOM technique detected differences between CSL batches, allowing easy and early identification of varying batches. A consistent performance of the CSL batches in E. coli and B. subtilis cultivations was demonstrated.

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3