Phosphate limitation enhances malic acid production on nitrogen-rich molasses with Ustilago trichophora

Author:

Grebe Luca AntoniaORCID,Lichtenberg Philipp GeorgORCID,Hürter KatharinaORCID,Forsten EvaORCID,Miebach KatharinaORCID,Büchs JochenORCID,Magnus Jørgen BarsettORCID

Abstract

Abstract Background An important step in replacing petrochemical products with sustainable, cost-effective alternatives is the use of feedstocks other than, e.g., pure glucose in the fermentative production of platform chemicals. Ustilaginaceae offer the advantages of a wide substrate spectrum and naturally produce a versatile range of value-added compounds under nitrogen limitation. A promising candidate is the dicarboxylic acid malic acid, which may be applied as an acidulant in the food industry, a chelating agent in pharmaceuticals, or in biobased polymer production. However, fermentable residue streams from the food and agricultural industry with high nitrogen content, e.g., sugar beet molasses, are unsuited for processes with Ustilaginaceae, as they result in low product yields due to high biomass and low product formation. Results This study uncovers challenges in evaluating complex feedstock applicability for microbial production processes, highlighting the role of secondary substrate limitations, internal storage molecules, and incomplete assimilation of these substrates. A microliter-scale screening method with online monitoring of microbial respiration was developed using malic acid production with Ustilago trichophora on molasses as an application example. Investigation into nitrogen, phosphate, sulphate, and magnesium limitations on a defined minimal medium demonstrated successful malic acid production under nitrogen and phosphate limitation. Furthermore, a reduction of nitrogen and phosphate in the elemental composition of U. trichophora was revealed under the respective secondary substrate limitation. These adaptive changes in combination with the intricate metabolic response hinder mathematical prediction of product formation and make the presented screening methodology for complex feedstocks imperative. In the next step, the screening was transferred to a molasses-based complex medium. It was determined that the organism assimilated only 25% and 50% of the elemental nitrogen and phosphorus present in molasses, respectively. Due to the overall low content of bioavailable phosphorus in molasses, the replacement of the state-of-the-art nitrogen limitation was shown to increase malic acid production by 65%. Conclusion The identification of phosphate as a superior secondary substrate limitation for enhanced malic acid production opens up new opportunities for the effective utilization of molasses as a more sustainable and cost-effective substrate than, e.g., pure glucose for biobased platform chemical production.

Funder

Bundesministerium für Bildung und Forschung

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3