Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging

Author:

Drake Daniel F.1ORCID,Derado Gordana2ORCID,Zhang Lijun3ORCID,Bowman F. DuBois1ORCID,

Affiliation:

1. Department of Biostatistics School of Public Health, University of Michigan Ann Arbor Michigan USA

2. Department of Biostatistics and Bioinformatics Rollins School of Public Health, Emory University Atlanta Georgia USA

3. Department of Population and Quantitative Health Science Case Western Reserve University Cleveland Ohio USA

Abstract

AbstractAlzheimer's disease (AD) is a degenerative disorder involving significant memory loss and other cognitive deficits, manifesting as a progression from normal cognitive functioning to mild cognitive impairment to AD. The sooner an accurate diagnosis of probable AD is made, the easier it is to manage symptoms and plan for future therapy. Functional neuroimaging stands to be a useful tool in achieving early diagnosis. Among the many neuroimaging modalities, positron emission tomography (PET) provides direct regional assessment of, among others, brain metabolism, cerebral blood flow, amyloid deposition—all quantities of interest in the characterization of AD. However, there are analytic challenges in identifying early indicators of AD from these high‐dimensional imaging data sets, and it is unclear whether early indicators of AD are more likely to emerge in localized patterns of brain activity or in patterns of correlation between distinct brain regions. Early PET‐based analyses of AD focused on alterations in metabolic activity at the voxel‐level or in anatomically defined regions of interest. Other approaches, including seed‐voxel and multivariate techniques, seek to characterize metabolic connectivity by identifying other regions in the brain with similar patterns of activity across subjects. We briefly review various neuroimaging statistical approaches applied to determine changes in metabolic activity or metabolic connectivity associated with AD. We then present an approach that provides a unified statistical framework for addressing both metabolic activity and connectivity. Specifically, we apply a Bayesian spatial hierarchical framework to longitudinal metabolic PET scans from the Alzheimer's Disease Neuroimaging Initiative.This article is categorized under: Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical Models > Bayesian Models

Funder

National Institute of Neurological Disorders and Stroke

Alzheimer's Disease Neuroimaging Initiative

National Institutes of Health

National Institute on Aging

Publisher

Wiley

Subject

Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Alzheimer’s dementia EEG signals using deep learning;Transactions of the Institute of Measurement and Control;2024-08-13

2. A hybrid multimodal machine learning model for Detecting Alzheimer's disease;Computers in Biology and Medicine;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3