Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges

Author:

Steinle Heidrun1,Behring Andreas1,Schlensak Christian1,Wendel Hans Peter1,Avci-Adali Meltem1

Affiliation:

1. Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, Tuebingen, 72076, Germany

Abstract

Abstract Several diseases are caused by missing or defective synthesis of proteins due to genetic or acquired disorders. In recent years, in vitro transcribed (IVT) messenger RNA (mRNA)-based therapy for de novo protein expression in cells has increased in importance. Thereby, desired proteins can be produced in cells by exogenous delivery of IVT mRNA, which does not integrate into the host genome and results in transient production of target proteins. Due to the lack of genomic integration, the risk of mutation and tumor development is minimized. Different approaches using IVT mRNA have been applied to alter the expression profiles of cells by the production of proteins. IVT mRNAs encoding transcription factors have led to the highly efficient induction of pluripotency in somatic cells and generated induced pluripotent stem cells that are free of viral vector components. Furthermore, specific IVT mRNA cocktails containing more than one specific IVT mRNA can be used to directly induce the differentiation into a desired cell type. In theory, every desired mRNA can be produced in vitro and used to enable extrinsic biosynthesis of target proteins in each cell type. Cells can be engineered by IVT mRNA to express antigens on dendritic cells for vaccination and tumor treatment, surface receptors on stem cells for increased homing to distinct areas, and to produce industrial grade human growth factors. In this review, we focus on the progress and challenges in mRNA-based cell engineering approaches.

Funder

European Social Funds in Baden-Wuerttemberg, Germany

Ministry of Science, Research, and Art in Baden-Wuerttemberg

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3