No evidence of light inhibition on aerobic methanotrophs in coastal sediments using eDNA and eRNA

Author:

Broman Elias12ORCID,Barua Rinti1,Donald Daniel3,Roth Florian23,Humborg Christoph23,Norkko Alf23,Jilbert Tom34,Bonaglia Stefano5,Nascimento Francisco J. A.12

Affiliation:

1. Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden

2. Baltic Sea Centre Stockholm University Stockholm Sweden

3. Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences University of Helsinki Helsinki Finland

4. Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science University of Helsinki Helsinki Finland

5. Department of Marine Sciences University of Gothenburg Gothenburg Sweden

Abstract

AbstractIt is estimated that up to half of global methane (CH4) emissions are derived from microbial processes in aquatic ecosystems. However, it is not fully understood which factors explain the spatial and temporal variability of these emissions. For example, light has previously been shown to both inhibit and stimulate aerobic methane‐oxidizing bacteria (i.e., methanotrophs) in the water column. These contrasting results indicate that the mechanisms that light has on CH4 oxidation are not yet clearly known, even less so for benthic aerobic methanotrophs. Here, we tested whether light reaching the seafloor can inhibit methanotrophic activity on the sediment surface. We sampled and distributed over 40 intact sediment cores from two coastal sites (illuminated 10 m, and a dark site at 33 m water depth) into 0, 50, and 100 PAR light treatments. After 10 days, we found no difference between treatments for each site in pore‐water CH4 concentrations, relative abundance of aerobic methanotrophs, or the number of RNA transcripts related to methane oxidation. Our results suggest that light attenuation in coastal waters does not significantly affect aerobic methanotrophs in coastal sediments.

Funder

Svenska Forskningsrådet Formas

Walter ja Andrée de Nottbeckin Säätiö

Publisher

Wiley

Subject

Genetics,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3