Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
-
Published:2024-03-28
Issue:6
Volume:21
Page:1613-1628
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Koschorreck MatthiasORCID, Kamjunke Norbert, Koedel UtaORCID, Rode MichaelORCID, Schuetze ClaudiaORCID, Bussmann IngeborgORCID
Abstract
Abstract. Greenhouse gas (GHG) emissions from rivers are globally relevant, but quantification of these emissions comes with considerable uncertainty. Quantification of ecosystem-scale emissions is challenged by both spatial and short-term temporal variability. We measured spatio-temporal variability of CO2 and CH4 fluxes from a 1 km long reach of the lowland river Elbe in Germany over 3 d to establish which factor is more relevant to be taken into consideration: small-scale spatial variability or short-term temporal variability of CO2 and CH4 fluxes. GHG emissions from the river reach studied were dominated by CO2, and 90 % of total emissions were from the water surface, while 10 % of emissions were from dry fallen sediment at the side of the river. Aquatic CO2 fluxes were similar at different habitats, while aquatic CH4 fluxes were higher at the side of the river. Artificial structures to improve navigability (groynes) created still water areas with elevated CH4 fluxes and lower CO2 fluxes. CO2 fluxes exhibited a clear diurnal pattern, but the exact shape and timing of this pattern differed between habitats. By contrast, CH4 fluxes did not change diurnally. Our data confirm our hypothesis that spatial variability is especially important for CH4, while diurnal variability is more relevant for CO2 emissions from our study reach of the Elbe in summer. Continuous measurements or at least sampling at different times of the day is most likely necessary for reliable quantification of river GHG emissions.
Funder
Helmholtz Association
Publisher
Copernicus GmbH
Reference55 articles.
1. Attermeyer, K., Casas-Ruiz, J. P., Fuss, T., Pastor, A., Cauvy-Fraunié, S., Sheath, D., Nydahl, A. C., Doretto, A., Portela, A. P., Doyle, B. C., Simov, N., Gutmann Roberts, C., Niedrist, G. H., Timoner, X., Evtimova, V., Barral-Fraga, L., Bašić, T., Audet, J., Deininger, A., Busst, G., Fenoglio, S., Catalán, N., de Eyto, E., Pilotto, F., Mor, J.-R., Monteiro, J., Fletcher, D., Noss, C., Colls, M., Nagler, M., Liu, L., Romero González-Quijano, C., Romero, F., Pansch, N., Ledesma, J. L. J., Pegg, J., Klaus, M., Freixa, A., Herrero Ortega, S., Mendoza-Lera, C., Bednařík, A., Fonvielle, J. A., Gilbert, P. J., Kenderov, L. A., Rulík, M., and Bodmer, P.: Carbon dioxide fluxes increase from day to night across European streams, Commun. Earth Environ., 2, 118, https://doi.org/10.1038/s43247-021-00192-w, 2021. 2. Barbosa, P. M., Melack, J. M., Amaral, J. H. F., Linkhorst, A., and Forsberg, B. R.: Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain, J. Geophys. Res.-Biogeo, 126, e2020JG005911, https://doi.org/10.1029/2020JG005911, 2021. 3. Bartoscheck, T., Fehrenbach, D., and Fehrenbach, J.: Das Sensebook-Buch – 12 Projekte rund um Sensoren, Dpunkt Verlag, Heidelberg, ISBN: 978-3-86490-684-8, 2019. 4. Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. 5. Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L. G., Hall, R. O., Hotchkiss, E. R., Maavara, T., Pavelsky, T. M., Ran, L., Raymond, P., Rosentreter, J. A., and Regnier, P.: River ecosystem metabolism and carbon biogeochemistry in a changing world, Nature, 613, 449–459, https://doi.org/10.1038/s41586-022-05500-8, 2023.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|