Investigation on the blooming behavior of additives in nitrile butadiene rubber at elevated temperature

Author:

Wang Chuanfang1,Xia Zhidong1ORCID,Fu Peng1

Affiliation:

1. College of Material Science and Engineering Beijing University of Technology Beijing China

Abstract

AbstractThe degradation of rubber performance in service environments is closely associated with the blooming behavior of additives in the rubber. This study investigates surface precipitates and changes in tensile properties of nitrile butadiene rubber (NBR) after storage at 85°C in air. The morphology, elemental composition, phase composition, and functional groups of the precipitates were analyzed by scanning electron microscopy, energy dispersion spectroscopy, X‐ray diffraction, and fourier transform infrared spectroscopy. Based on the morphology of internal rubber particles and precipitates and variations in the Zn/C mass ratio (ERZn), the reaction between zinc oxide and stearic acid in rubber under long‐term thermal environment was determined. Four stages of blooming for the mixture of zinc oxide and zinc stearate were inferred, and the impact of the blooming on the degradation of tensile properties of NBR was established. A dramatic decrease in the elongation at break (δk) of NBR was correlated with the blooming of zinc stearate and its correspondingly weakened plasticizing effect.Highlights The core‐shell structured mixture of ZnO and Zn(St)2 bloomed onto the surface of nitrile butadiene rubber. The ratio of mass percentages of Zn to C evaluated the blooming process of additives. The migration and blooming process of precipitates were divided into four stages. The decrease in elongation of the rubber was attributed to the blooming of Zn(St)2.

Funder

State Grid Corporation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3