Annual degradation rates and soiling losses of photovoltaic systems composed of recent crystalline silicon technologies in temperate climate

Author:

Ishii Tetsuyuki1ORCID

Affiliation:

1. Central Research Institute of Electric Power Industry Yokosuka‐shi Kanagawa Japan

Abstract

AbstractThe purpose of this study is to investigate the annual degradation rates of photovoltaic (PV) systems composed of PV modules based on recent crystalline silicon (c‐Si) PV technologies. We investigated the annual degradation rates of four PV systems composed of different c‐Si PV technologies, comprising p‐type multi‐crystalline silicon with a passivated emitter rear cell, n‐type silicon heterojunction, p‐type single‐crystalline silicon (sc‐Si) with an aluminum back surface field, and n‐type (sc‐Si) solar cell technologies. These systems were located in Gunma Prefecture in Japan and were measured over 6 years. Furthermore, the effects of soiling on the annual degradation rates of these PV systems were examined by partially surface cleaning the PV arrays two times. The results obtained indicate that the apparent annual degradation rates of the PV strings before surface cleaning were 0.8, 1.6, 1.4, and 1.2%/year, respectively, because of optical losses due to dust particles. However, the inherent annual degradation rates of the PV strings after surface cleaning were 0.1, 0.6, 0.0, and 0.3%/year, respectively. These low degradation rates indicate that the PV systems composed of the recent c‐Si PV technologies all offered reasonably stable performance that was reduced by 3.6%, 5.5%, 7.3%, and 4.8%, respectively because of the effects of surface soiling, although the surfaces of the PV arrays had been washed by plentiful rainfall under their humid subtropical climatic operating conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3