Optimized tuberculosis classification system for chest X‐ray images: Fusing hyperparameter tuning with transfer learning approaches

Author:

Wajgi Rakhi1,Yenurkar Ganesh1ORCID,Nyangaresi Vincent O.2,Wanjari Badal1,Verma Sanjana1,Deshmukh Arya1,Mallewar Somesh1

Affiliation:

1. Computer Technology Department Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India

2. Computer Science & Engineering Jaramogi Oginga Odinga University of Science & Technology Bondo Kenya

Abstract

AbstractAdvanced diagnostic methods are necessary for the prompt and reliable identification of tuberculosis (TB), which continues to be a worldwide health problem. Globally, there were projected to be 10 million new cases of tuberculosis in 2021, of which 9.8 million affected adults and 0.2 million children. About 15% of fatalities worldwide are attributable to tuberculosis (1.5 million deaths for every 10 million infections). To create a reliable model for tuberculosis (TB) identification using chest X‐ray pictures, we use deep learning approaches in this work, namely Convolutional Neural Networks (CNNs) and a combination of transfer learning and hyperparameter tuning. The dataset provides a varied selection of 3500 normal and 700 TB‐infected patients. It consists of 4200 photos that were obtained from the “Tuberculosis (TB) Chest X‐ray Database” on Kaggle. By utilizing the benefits of a trained model, the suggested methodological approach incorporates transfer learning. To maximize the performance of the suggested model, hyperparameter adjustment is also used. Using the VGG19 pre‐trained neural network, the model design is based on the concepts of transfer learning. The architecture makes use of task‐specific layers, regularization methods, and deliberate layer freezing to enable sophisticated categorization. Training and assessment stages demonstrate encouraging outcomes, with an accuracy of almost 98% attained on a different test dataset. A more thorough examination highlights the need for caution when interpreting high accuracy, nevertheless, by highlighting possible difficulties.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3