A reliable non‐volatile in‐memory computing associative memory based on spintronic neurons and synapses

Author:

Rezaei Mahan1,Amirany Abdolah2ORCID,Moaiyeri Mohammad Hossein1ORCID,Jafari Kian34

Affiliation:

1. Faculty of Electrical Engineering Shahid Beheshti University Tehran Iran

2. Department of Electrical and Computer Engineering The George Washington University Washington DC USA

3. Interdisciplinary Institute for Technological Innovation (3IT) Université de Sherbrooke Quebec Canada

4. Faculty of Engineering Université de Sherbrooke Sherbrooke Quebec Canada

Abstract

AbstractThis article introduces an innovative non‐volatile associative memory (AM) that leverages spintronic synapses, employing magnetic tunnel junctions (MTJ) in conjunction with neurons constructed using carbon nanotube field‐effect transistors (CNTFETs). Our proposed design represents a significant advancement in area optimization and outperforms prior designs. We adopt MTJ‐based spintronic devices due to their remarkable attributes, including dependable reconfigurability and nonvolatility. Simultaneously, CNTFETs effectively address the longstanding limitations traditionally associated with MOSFETs. In this work, our proposed design undergoes rigorous simulations that account for process variations. The results demonstrate that our AM system closely approximates its ideal mathematical model, even with significant process variations. Furthermore, we investigate the impact of Tunnel Magnetoresistance (TMR) on the performance of our proposed AM system. Our investigations reveal that, even with a TMR as low as 100%, our design matches and often surpasses the performance of its counterparts operating with a TMR of 300%. This achievement holds profound significance from a fabrication standpoint, as fabricating MTJs with high TMR values can be intricate and costly. Overall, our novel AM system represents a significant breakthrough in emerging technologies, harnessing the unique strengths of spintronic synapses and advanced carbon nanotube transistors while robustly addressing challenges in performance and variability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3