Impact of end‐capped engineering on the optoelectronic characteristics of pyrene‐based non‐fullerene acceptors for organic photovoltaics

Author:

Qundeel 1,Adnan Muhammad2,Hussain Riaz1ORCID,Shehzad Rao Aqil13,Muhammad Shabbir4,Mustafa Ghulam1,Irshad Zobia2

Affiliation:

1. Department of Chemistry University of Okara Okara Pakistan

2. Graduate School of Energy Science and Technology Chungnam National University Daejeon Republic of Korea

3. Department of Chemistry University of Agriculture Faisalabad Pakistan

4. Department of Chemistry, College of Science King Khalid University Abha Saudi Arabia

Abstract

AbstractPyrene‐based molecules are being explored as prospective fullerene‐free acceptors for organic solar cells (OSCs), due to their easy accessibility, structural planarity, and excellent electron delocalization. In this work, we successfully designed and analyzed pyrene‐based acceptor materials (QL1–QL8) to investigate their photophysical and electro‐optical parameters. Various geometric parameters were computed at the MPW1PW91/6‐31G(d,p). Advanced quantum chemical approaches were employed to characterize the molecules. All the tailored molecules (QL1–QL8) exhibit a lower bandgap than the reference (R), signifying their superiority. Among these, QL8 was found to have a maximum absorption (λmax) at 791.37 nm and an optical bandgap (ELUMO − EHOMO) minimum of 2.11 eV. Redshifted absorption spectra are observed in both gaseous and solvent phases for all the designed (QL1–QL8) molecules in contrast to R. Among these, QL4 exhibits the highest light harvesting efficiency (0.9826), and open‐circuit voltage. A detailed donor–acceptor investigation of QL8/PBDB‐T revealed the marvelous charge switching at the donor–acceptor interface. The approach used in this study is anticipated to facilitate the manufacturing of highly efficient OSC molecules.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3