Affiliation:
1. Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education Harbin University of Science and Technology Harbin China
Abstract
AbstractIn this paper, SiO2 particles with three particle sizes of 60 nm, 2 μm, and 25 μm were added as fillers into the composites prepared by epoxy resin and micron silicon carbide to investigate the mechanism of SiO2 particle size on the nonlinear electrical conductivity and breakdown characteristics of the composites. Compared with SiC/EP composites, the smaller the added SiO2 particle size, the lower the current density at high fields and the higher the breakdown field strength of SiO2/SiC/EP composites. The nonlinear coefficients of SiO2/SiC/EP composites increased slightly with the addition of 1phr 25 μm SiO2 and 4phr 2 μm SiO2, and the breakdown field strengths were increased by 55.36% and 66.77%, respectively. The SiO2/SiC/EP composites with the addition of 4phr 60 nm SiO2 particles showed the most significant attenuation of the conductivity current and the most prominent enhancement of the breakdown field strength, but the nonlinear coefficient was reduced by 24.6%. With the increase of SiO2 doping amount, compared with the composites with the same particle size and low doping amount, the larger the SiO2 particle size, the decrease of the current density of the composites under high field intensity is more obvious, and the dielectric constant drops even more.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献