Improved Insulating Properties of Polymer Dielectric by Constructing Interfacial Composite Coatings

Author:

Wang Jia-Xuan1,Chen Yong-Gang2ORCID,Chen Ji-Ming1,Yin Zhi-Hui1,Chen Chun-Song1,Li Yi-Fei1,Deng Ting1,Guo Xiao-Bo1,Zhu Ming-Xiao1ORCID

Affiliation:

1. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

2. School of Science, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Polymeric dielectrics exhibit remarkable dielectric characteristics and wide applicability, rendering them extensively employed within the domain of electrical insulation. Nevertheless, the electrical strength has always been a bottleneck, preventing its further utilization. Nanocomposite materials can effectively improve insulation strength, but uniform doping of nanofillers in engineering applications is a challenge. Consequently, a nanocomposite interfacial coating was meticulously designed to interpose between the electrode and the polymer, which can significantly improve DC breakdown performance. Subsequently, the effects of filler concentration and coating duration on DC breakdown performance, high field conductivity, and trap distribution characteristics were analyzed. The results indicate that the composite coating introduces deep traps between the electrode-polymer interface, which enhances the carrier confinement, resulting in reduced conductivity and enhanced DC breakdown strength. The incorporation of a composite coating at the interface between the electrode and polymer presents novel avenues for enhancing the dielectric insulation of polymers.

Funder

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3