Capture rates of Eptesicus fuscus increase following white‐nose syndrome across the eastern US

Author:

Simonis Molly C.12ORCID,Hartzler Lynn K.13ORCID,Turner Gregory G.4ORCID,Scafini Michael R.4ORCID,Johnson Joseph S.5ORCID,Rúa Megan A.13ORCID

Affiliation:

1. Environmental Sciences PhD Program Wright State University Dayton Ohio USA

2. School of Biological Sciences University of Oklahoma Norman Oklahoma USA

3. Department of Biological Sciences Wright State University Dayton Ohio USA

4. Pennsylvania Game Commission Bureau of Wildlife Management Harrisburg Pennsylvania USA

5. School of Information Technology University of Cincinnati Cincinnati Ohio USA

Abstract

AbstractEmerging infectious diseases threaten wildlife globally. While the effects of infectious diseases on hosts with severe infections and high mortality rates often receive considerable attention, effects on hosts that persist despite infection are less frequently studied. To understand how persisting host populations change in the face of disease, we quantified changes to the capture rates of Eptesicus fuscus (big brown bats), a persisting species susceptible to infection by the invasive fungal pathogen Pseudogymnoascus destructans (Pd; causative agent for white‐nose syndrome), across the eastern US using a 30‐year dataset. Capture rates of male and female E. fuscus increased from preinvasion to pathogen establishment years, with greater increases to the capture rates of females than males. Among females, capture rates of pregnant and post‐lactating females increased by pathogen establishment. We outline potential mechanisms for these broad demographic changes in E. fuscus capture rates (i.e., increases to foraging from energy deficits created by Pd infection, increases to relative abundance, or changes to reproductive cycles), and suggest future research for identifying mechanisms for increasing capture rates across the eastern US. These data highlight the importance of understanding how populations of persisting host species change following pathogen invasion across a broad spatial scale. Understanding changes to population composition following pathogen invasion can identify broad ecological patterns across space and time, and open new avenues for research to identify drivers of those patterns.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3