Affiliation:
1. Research Center of Special adhesives and Sealing materials Heilongjiang Academy of Sciences Institute of Petrochemistry Harbin China
2. Functional structure design department Kuang‐Chi Institute of Advanced Technology Shenzhen China
Abstract
AbstractWet mixing and solvent evaporation were used to prepare in situ exfoliation and surface functionalization of graphene oxide (GO). The structure and composition of diglycidyl 7‐oxabicyclo[4.1.0]heptane‐3,4‐dicarboxylate (TDE85) functionalized GO (TDE85‐GO) were characterized. A thorough investigation was done into how surface functionalization affected the shape and dispersion of GO as well as the mechanical and thermal performance of the TDE85‐GO/epoxy composites. TDE85‐GO was evenly distributed throughout the matrix as a result of the special preparation method and excellent interfacial interaction between the functionalized GO and epoxy. By incorporating 0.5 wt% of TDE85‐GO, the molecular weight between crosslinks decreased from 435.1 to 182.0 g/mol, and the glass transition temperature significantly increased by 45.7°C from 148.8 to 194.5°C. The tensile strength, Young's modulus, and elongation at break increased by 18.3%, 3.7%, and 29.9%, respectively. Moreover, thermomechanical and water resistance properties have also been improved. This approach is a workable one to produce high‐performance structural composites. This approach represents a practical strategy for developing high‐performance structural composites.Highlights
In situ exfoliation and surface functionalization of graphene oxide.
Glass transition temperature increased by 45.7°C with 0.5 wt% of TDE85‐GO.
Tensile, thermomechanical, and water resistance properties were improved.
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献