Assessing the impact of bag‐of‐words versus word‐to‐vector embedding methods and dimension reduction on anomaly detection from log files

Author:

Qiu Ziyu1,Zhou Zhilei1,Niblett Bradley2,Johnston Andrew2,Schwartzentruber Jeffrey1,Zincir‐Heywood Nur1,Heywood Malcolm I.1

Affiliation:

1. Faculty of Computer Science Dalhousie University Halifax Nova Scotia Canada

2. 2Keys Corporation An Interac Company Ottawa Ontario Canada

Abstract

AbstractIn terms of cyber security, log files represent a rich source of information regarding the state of a computer service/system. Automating the process of summarizing log file content represents an important aid for decision‐making, especially given the 24/7 nature of network/service operations. We perform benchmarking over eight distinct log files in order to assess the impact of the following: (1) different embedding methods for developing semantic descriptions of the original log files, (2) applying dimension reduction to the high‐dimensional semantic space, and (3) assessing the impact of using different unsupervised learning algorithms for providing a visual summary of the service state. Benchmarking demonstrates that (1) word‐to‐vector embeddings identified by bidirectional encoder representation from transformers (BERT) without “fine‐tuning” are sufficient to match the performance of Bag‐or‐Words embeddings provided by term frequency‐inverse document frequency (TF‐IDF) and (2) the self‐organizing map without dimension reduction provides the most effective anomaly detector.

Publisher

Wiley

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3