Exploring syntactical features for anomaly detection in application logs
Author:
Affiliation:
1. 153020 Dalhousie University , Faculty of Computer Science , 6299 South Street , Halifax , NS , Canada
2. 2Keys , 20 Eglinton Ave. W. – Suite 1500 , Toronto , Ontario , Canada
Abstract
Publisher
Walter de Gruyter GmbH
Subject
General Computer Science
Link
https://www.degruyter.com/document/doi/10.1515/itit-2021-0064/pdf
Reference25 articles.
1. J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and benchmarks for automated log parsing,” in 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2019, pp. 121–130.
2. D. El-Masri, F. Petrillo, Y.-G. Guéhéneuc, A. Hamou-Lhadj, and A. Bouziane, “A systematic literature review on automated log abstraction techniques,” Information and Software Technology, vol. 122, p. 106276, 2020.
3. R. Copstein, J. Schwartzentruber, N. Zincir-Heywood, and M. Heywood, “Log abstraction for information security: Heuristics and reproducibility,” in The 16th International Conference on Availability, Reliability and Security, ser. ARES 2021. New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3465481.3470083.
4. B. Gallagher and T. Eliassi-Rad, “Classification of http attacks: a study on the ecml/pkdd 2007 discovery challenge,” Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2009.
5. H. Dev and Z. Liu, “Identifying frequent user tasks from application logs,” in Proceedings of the 22nd International Conference on Intelligent User Interfaces, ser. IUI ’17. New York, NY, USA: Association for Computing Machinery, 2017, pp. 263–273. [Online]. Available: https://doi.org/10.1145/3025171.3025184.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Benchmarking Large Language Models for Log Analysis, Security, and Interpretation;Journal of Network and Systems Management;2024-06-13
2. Large language models and unsupervised feature learning: implications for log analysis;Annals of Telecommunications;2024-04-04
3. Assessing the impact of bag‐of‐words versus word‐to‐vector embedding methods and dimension reduction on anomaly detection from log files;International Journal of Network Management;2023-10-27
4. Exploring Semantic vs. Syntactic Features for Unsupervised Learning on Application Log Files;2023 7th Cyber Security in Networking Conference (CSNet);2023-10-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3