Mechanical and thermal properties of rice husk/glass fiber/polylactic acid composites

Author:

Sun Yufeng1ORCID,Zhang Ziheng1,Wang Jinwei1,Liu Hengyu1,Shi Dongming1,Liu Mingyang1,Ying Jilai1,Mu Wenlong1,Li Defeng1,Wu Song2

Affiliation:

1. Henan Agricultural University Zhengzhou China

2. Tongbai County Publicity and Culture Center, Tongbai County Science and Technology Bureau Nanyang China

Abstract

AbstractPolylactic acid (PLA) composites reinforced with rice husk and glass fiber can improve the properties in the aera of the material for vehicle application. In this work, the PLA composite was made and its properties were evaluated using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). SEM observed that the polymer matrix contained a uniform dispersion of 10 wt% rice husks. The tensile strength and bending strength of the composite are 45.8 and 48.2 MPa, respectively, which are 52% and 41% higher than that of the base material PLA. TGA revealed that the thermal stability of the composite deteriorated with increasing rice husk content. The DTG curve indicated that the incorporation of rice husk and glass fiber led to a reduction in the maximum degradation rate of the PLA matrix. As a result, the thermal degradation of the PLA composite exhibited enhanced stability. The average apparent activation energy (Ea) of the composite, determined using the Friedman (FD), Flynn Wall Ozawa (FWO), Starink (ST), and Kissinger (KS) models, falls within the range of 90 to 120 kJ mol−1.Highlights Silane coupling agent was used to improve the interfacial compatibility of fillers. The synergistic action of rice husk and glass fiber fillers enhances the mechanical properties of polylactic acid composites. The mean apparent activation energy (Ea) of the composite was calculated using four models, with values in the range of 90 to 120 kJ mol−1. The Flynn Wall Ozawa and Starink models showed better stability against temperature changes compared to the Friedman model.

Funder

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3