Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications

Author:

Teixeira Stefanie,Eblagon Katarzyna MorawaORCID,Miranda Filipa,R. Pereira M. FernandoORCID,Figueiredo José LuisORCID

Abstract

Environmental issues urge for the substitution of petrochemical-based raw materials with more environmentally friendly sources. The biggest advantages of PLA over non-biodegradable plastics are that it can be produced from natural sources (e.g., corn or sugarcane), and at the end of its lifetime it can be returned to the soil by being composted with microorganisms. PLA can easily substitute petroleum-based plastics in a wide range of applications in many commodity products, such as disposable tableware, packaging, films, and agricultural twines, partially contributing to limiting plastic waste accumulation. Unfortunately, the complete replacement of fossil fuel-based plastics such as polyethylene (PE) or poly(ethylene terephthalate) (PET) by PLA is hindered by its higher cost, and, more importantly, slower degradation as compared to other degradable polymers. Thus, to make PLA more commercially attractive, ways to accelerate its degradation are actively sought. Many good reviews deal with PLA production, applications, and degradation but only in the medical or pharmaceutical field. In this respect, the present review will focus on controlled PLA degradation and biodegradation in technical applications. The work will include the main degradation mechanisms of PLA, such as its biodegradation in water, soil, and compost, in addition to thermal- and photo-degradation. The topic is of particular interest to academia and industry, mainly because the wider application of PLA is mostly dependent on discovering effective ways of accelerating its biodegradation rate at the end of its service life without compromising its properties.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Medicine

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3