A white paper on good research practices in benchmarking: The case of cluster analysis

Author:

Van Mechelen Iven1ORCID,Boulesteix Anne‐Laure2ORCID,Dangl Rainer3ORCID,Dean Nema4ORCID,Hennig Christian5ORCID,Leisch Friedrich3ORCID,Steinley Douglas6ORCID,Warrens Matthijs J.7ORCID

Affiliation:

1. Quantitative Psychology and Individual Differences University of Leuven Leuven Belgium

2. Faculty of Medicine LMU Munich and Munich Center of Machine Learning Munich Germany

3. Institute of Statistics University of Natural Resources and Life Sciences Vienna Austria

4. School of Mathematics & Statistics University of Glasgow Glasgow UK

5. Department of Statistical Sciences “Paolo Fortunati” University of Bologna Bologna Italy

6. Psychological Sciences University of Missouri Columbia Missouri USA

7. Department of Pedagogical and Educational Sciences University of Groningen Groningen The Netherlands

Abstract

AbstractTo achieve scientific progress in terms of building a cumulative body of knowledge, careful attention to benchmarking is of the utmost importance, requiring that proposals of new methods are extensively and carefully compared with their best predecessors, and existing methods subjected to neutral comparison studies. Answers to benchmarking questions should be evidence‐based, with the relevant evidence being collected through well‐thought‐out procedures, in reproducible and replicable ways. In the present paper, we review good research practices in benchmarking from the perspective of the area of cluster analysis. Discussion is given to the theoretical, conceptual underpinnings of benchmarking based on simulated and empirical data in this context. Subsequently, the practicalities of how to address benchmarking questions in clustering are dealt with, and foundational recommendations are made based on existing literature.This article is categorized under: Fundamental Concepts of Data and Knowledge > Data Concepts Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining Technologies > Structure Discovery and Clustering

Funder

Bundesministerium für Bildung und Forschung

Engineering and Physical Sciences Research Council

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3