Enhancing oxygen evolution reaction via hydrogen plasma treatment: Unveiling the functionality of CN defects and the role of Fe in NiFe Prussian blue analogs

Author:

Ruan Qingdong1,Li Dan1,Wu Chaoling2,Huang Chao123ORCID,Chu Paul K.1

Affiliation:

1. Department of Physics City University of Hong Kong Kowloon Hong Kong China

2. Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu China

3. Yunnan Provincial Rural Energy Engineering Key Laboratory Yunnan Normal University Kunming Yunnan China

Abstract

AbstractThe rational design of electronic and vacancy structures is crucial to regulating and enhancing electrocatalytic water splitting. However, creating novel vacancies and precisely controlling the number of vacancies in existing materials systems pose significant challenges. Herein, a novel approach to optimize the concentration of the CN vacancy (VCN) in the NiFe Prussian blue analog (PBA) nanocubes is designed by incorporating the H2 or O2 plasma treatment. The relationship between the VCN and catalysis is analyzed, and results show that a moderate concentration of VCN (6.5%) can enormously enhance oxygen evolution reaction (OER) activity of NiFe PBA. However, an excessive amount of VCN disrupts the crystal structure and hinders the transportation of charge carriers, consequently leading to inferior OER. Furthermore, the VCN significantly activates the activity of Fe sites, inducing preferential adsorption of OH on Fe sites, followed by adsorption on Ni sites, thereby optimizing the reaction pathway and significantly promoting OER performance. In addition, VCN also suppresses Fe leaching, giving the catalyst excellent durability. This study reveals the feasibility of creating unconventional defects in nanomaterials and precisely controlling the number of vacancies for diverse catalytic and energy applications.

Funder

Sichuan University

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3