Atomic Structure Amorphization and Electronic Structure Reconstruction of FeCoNiCrMox High‐Entropy Alloy Nanoparticles for Highly Efficient Water Oxidation

Author:

Zhou Xuechun1,Zhu He1,Fu Shu1,Lan Si1,Hahn Horst2,Zeng Jianrong34,Feng Tao1ORCID

Affiliation:

1. Herbert Gleiter Institute of Nanoscience School of Material Science and Engineering Nanjing Nanjing University of Science and Technology Nanjing 210094 P. R. China

2. Institute of Nanotechnology Karlsruhe Institute of Technology 76021 Karlsruhe Germany

3. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China

4. Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China

Abstract

AbstractThe complexity of the multielement interaction in high‐entropy alloys (HEAs) may provide more active sites to adapt different catalytic reaction steps in oxygen evolution reaction (OER). Investigating the correlation between structure and performance of HEAs electrocatalysts is both essential and challenging. In this work, FeCoNiCrMox HEA nanoparticles are successfully fabricated utilizing a unique nanofabrication method called inert gas condensation. With the increase of high‐valence metal component Mo, the atomic structure amorphization and electronic structure reconstruction are unveiled. According to the X‐ray photoelectron spectroscopy valence spectra, the d‐band center of FeCoNiCrMox is ascending, and thus enhancing the adsorption energy. Synchrotron pair distribution function analysis reflects the degree of structural disorder and reveals a robust correlation with the intrinsic OER activities of the electrocatalysts. FeCoNiCrMo1.0 high‐entropy metallic glass nanoparticles exhibit an outstanding OER performance with an ultralow overpotential of 294.5 mV at a high current density of 100 mA cm−2. This work brings fundamental and practical insights into the modulation mechanism of metal components of HEAs catalysts for developing OER.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3