Controlling C2C12 Cytotoxicity on Liquid Metal Embedded Elastomer (LMEE)

Author:

Won Phillip1ORCID,Coyle Stephen1,Ko Seung Hwan2,Quinn David1,Hsia K. Jimmy34,LeDuc Philip51ORCID,Majidi Carmel51ORCID

Affiliation:

1. Mechanical Engineering Carnegie Mellon University Pittsburgh PA 15213 USA

2. Mechanical Engineering Seoul National University Seoul 08826 Republic of Korea

3. Chemical & Biomedical Engineering Nanyang Technical University Singapore 639798 Singapore

4. Mechanical & Aerospace Engineering Nanyang Technical University Singapore 639798 Singapore

5. Biomedical Engineering Carnegie Mellon University Pittsburgh PA 15213 USA

Abstract

AbstractLiquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium‐indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically‐conductive LMEE composites in which a percolating network of EGaIn droplets is created through “mechanical sintering” is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems.

Funder

Air Force Research Laboratory

National Institutes of Health

Air Force Office of Scientific Research

National Science Foundation

Directorate for Biological Sciences

Division of Computing and Communication Foundations

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3