Stretchable Thermoelectric Generators for Self‐Powered Wearable Health Monitoring

Author:

Zadan Mason1ORCID,Wertz Anthony2ORCID,Shah Dylan3ORCID,Patel Dinesh K.14ORCID,Zu Wuzhou1ORCID,Han Youngshang5ORCID,Gelorme Jeff3,Mea Hing Jii3ORCID,Yao Lining4ORCID,Malakooti Mohammad H.5ORCID,Ko Seung Hwan6ORCID,Kazem Navid3ORCID,Majidi Carmel12ORCID

Affiliation:

1. Department of Mechanical Engineering Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

2. Robotics Institute Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

3. Arieca Inc. 201 N Braddock Ave Suite 334 Pittsburgh PA 15208 USA

4. Human Computer Interaction Institute Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

5. Department of Mechanical Engineering University of Washington 3900 E Stevens Way NE Seattle WA 98195 USA

6. Department of Mechanical Engineering Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 South Korea

Abstract

AbstractAs continuous wearable physiological monitoring systems become more ubiquitous in healthcare, there is an increasing need for power sources that can sustainably power wireless sensors and electronics for long durations. Wearable energy harvesting with thermoelectric generators (TEGs), in which body heat is converted to electrical energy, presents a promising way to prolong wireless operation and address battery life concerns. In this work, high performance TEGs are introduced that combine 3D printed elastomers with liquid metal epoxy polymer composites and thermoelectric semiconductors to achieve elastic compliance and mechanical compatibility with the body. The thermoelectric properties are characterized in both energy harvesting (Seebeck) and active heating/cooling (Peltier) modes, and examine the performance of wearable energy harvesting under various conditions such as sitting, walking, and running. When worn on a user's forearm while walking outside, the TEG arrays are able to power circuitry to collect photoplethysmography (PPG) waveform data with a photonic sensor and wirelessly transmit the data to an external PC using an on‐board Bluetooth Low Energy (BLE) radio. This represents a significant step forward on the path to sustainable body‐worn smart electronics.

Funder

Air Force Research Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3