4D Bioprinting via Molecular Network Contraction for Membranous Tissue Fabrication

Author:

McLoughlin Shannon T.12ORCID,McKenna Abigail R.23,Fisher John P.12

Affiliation:

1. Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA

2. Center for Engineering Complex Tissues University of Maryland College Park MD 20742 USA

3. Department of Biology University of Maryland College Park MD 20742 USA

Abstract

AbstractGeneration of thin membranous tissues (TMT), such as the cornea, epidermis, and periosteum, presents a difficult fabrication challenge in tissue engineering (TE). TMTs consist of several cell layers that are less than 100 µm in thickness per layer. While traditional methods provide the necessary resolution for TMT fabrication, they require significant handling and incorporation of several layers is limited. Extrusion bioprinting offers precise control over deposition of different biomaterials and cell populations within the same construct but lacks the resolution to generate biomimetic TMTs. For the first time, a 4D bioprinting strategy that allows for the generation of cell‐laden TMTs is developed. Anionic gelatin methacrylate (GelMA) hydrogels are treated with cationic poly‐l‐lysine (PLL), which induces charge attraction, microscale network collapse, and macroscale hydrogel shrinking. The impact of shrinking on hydrogel properties, print resolution, and cell viability is presented. Additionally, this work suggests that a novel mechanism is occurring, where PLL exhibits a contractile force on GelMA and PLL molecular weight drives GelMA shrinking capabilities. Finally, it is shown that this phenomenon can occur while maintaining an encapsulated cell population. These findings address a critical barrier by generating macroscale tissue structures with their microscale TMT counterparts in the same print.

Funder

National Institutes of Health

Osteo Science Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3