Comparison of cation and anion‐mediated resolution enhancement of bioprinted hydrogels for membranous tissue fabrication

Author:

McLoughlin Shannon T.12ORCID,Wilcox Paige23,Han Sarang12,Caccamese John F.4,Fisher John P.12

Affiliation:

1. Fischell Department of Bioengineering University of Maryland College Park Maryland USA

2. Center for Engineering Complex Tissues University of Maryland College Park Maryland USA

3. Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland USA

4. Department of Oral and Maxillofacial Surgery University of Maryland School of Dentistry, University of Maryland Medical Center Baltimore Maryland USA

Abstract

AbstractFabrication of engineered thin membranous tissues (TMTs) presents a significant challenge to researchers, as these structures are small in scale, but present complex anatomies containing multiple stratified cell layers. While numerous methodologies exist to fabricate such tissues, many are limited by poor mechanical properties, need for post‐fabrication, or lack of cytocompatibility. Extrusion bioprinting can address these issues, but lacks the resolution necessary to generate biomimetic, microscale TMT structures. Therefore, our goal was to develop a strategy that enhances bioprinting resolution below its traditional limit of 150 μm and delivers a viable cell population. We have generated a system to effectively shrink printed gels via electrostatic interactions between anionic and cationic polymers. Base hydrogels are composed of gelatin methacrylate type A (cationic), or B (anionic) treated with anionic alginate, and cationic poly‐L‐lysine, respectively. Through a complex coacervation‐like mechanism, the charges attract, causing compaction of the base GelMA network, leading to reduced sample dimensions. In this work, we evaluate the role of both base hydrogel and shrinking polymer charge on effective print resolution and cell viability. The alginate anion‐mediated system demonstrated the ability to reach bioprinting resolutions of 70 μm, while maintaining a viable cell population. To our knowledge, this is the first study that has produced such significant enhancement in extrusion bioprinting capabilities, while also remaining cytocompatible.

Funder

Osteo Science Foundation

University of Maryland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3