Mesenchymal Stem Cells Sense the Toughness of Nanomaterials and Interfaces

Author:

Peng Lihui12,Matellan Carlos3,Bosch‐Fortea Minerva12,Gonzalez‐Molina Jordi12,Frigerio Matteo4,Salentinig Stefan4,del Rio Hernandez Armando3,Gautrot Julien E.12ORCID

Affiliation:

1. Institute of Bioengineering Queen Mary University of London Mile End Road E1 4NS London UK

2. Cellular and Molecular Biomechanical Laboratory Department of Bioengineering Imperial College London London SW7 2AZ UK

3. School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK

4. Department of Chemistry University of Fribourg Chemin du Musée 9 Fribourg 1700 Switzerland

Abstract

AbstractStem cells are known to sense and respond to the mechanical properties of biomaterials. In turn, cells exert forces on their environment that can lead to striking changes in shape, size and contraction of associated tissues, and may result in mechanical disruption and functional failure. However, no study has so far correlated stem cell phenotype and biomaterials toughness. Indeed, disentangling toughness‐mediated cell response from other mechanosensing processes has remained elusive as it is particularly challenging to uncouple Youngs' or shear moduli from toughness, within a range relevant to cell‐generated forces. In this report, it is shown how the design of the macromolecular architecture of polymer nanosheets regulates interfacial toughness, independently of interfacial shear storage modulus, and how this controls the expansion of mesenchymal stem cells at liquid interfaces. The viscoelasticity and toughness of poly(l‐lysine) nanosheets assembled at liquid‐liquid interfaces is characterised via interfacial shear rheology. The local (microscale) mechanics of nanosheets are characterised via magnetic tweezer‐assisted interfacial microrheology and the thickness of these assemblies is determined from in situ ellipsometry. Finally, the response of mesenchymal stem cells to adhesion and culture at corresponding interfaces is investigated via immunostaining and confocal microscopy.

Funder

European Research Council

China Scholarship Council

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3