Strong Elastic Protein Nanosheets Enable the Culture and Differentiation of Induced Pluripotent Stem Cells on Microdroplets

Author:

Mojares Elijah1,Nadal Clemence1,Hayler Daniel1,Kanso Hassan1,Chrysanthou Alexandra1,Neri Cruz Carlos E.1,Gautrot Julien E.1ORCID

Affiliation:

1. School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK

Abstract

AbstractAdvances in stem cell technologies, revolutionizing regenerative therapies and advanced in vitro testing, require novel cell manufacturing pipelines able to cope with scale up and parallelization. Microdroplet technologies, which have transformed single cell sequencing and other cell‐based assays, are attractive in this context, but the inherent soft mechanics of liquid‐liquid interfaces is typically thought to be incompatible with the expansion of induced pluripotent stem cells (iPSCs), and their differentiation. In this work, the design of protein nanosheets stabilizing liquid‐liquid interfaces and enabling the adhesion, expansion and retention of stemness by iPSCs is reported. Microdroplet microfluidic chips are used to control the formulation of droplets with defined dimensions and size distributions. The resulting emulsions sustain high expansion rates, with excellent retention of stem cell marker expression. iPSCs cultured in such conditions retain the capacity to differentiate into cardiomyocytes. This work provides clear evidence that local nanoscale mechanics, associated with interfacial viscoelasticity, provides strong cues able to regulate and maintain pluripotency, as well as to support commitment in defined differentiation conditions. Microdroplet technologies appear as attractive candidates to transform cell manufacturing pipelines, bypassing significant hurdles paused by solid substrates and microcarriers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3