Affiliation:
1. Chair of Soil Physics University of Bayreuth Bayreuth Germany
2. Department of Environmental Sciences University of California Riverside California USA
3. Soil Science Section University of Kassel Witzenhausen Germany
Abstract
AbstractThe Brunswick modular framework for modeling unsaturated soil hydraulic properties (SHP) over the full moisture range was implemented in the Hydrus suite. Users can now additionally choose between four different variants of the Brunswick model: (i) van Genuchten–Mualem (VGM), (ii) Brooks–Corey, (iii) Kosugi, and (iv) modified van Genuchten. For demonstration purposes, simulation results for two different setups, (i) bare soil evaporation and (ii) root water uptake, are presented, along with a comparison of the original VGM model and its Brunswick variant. Results show that the original VGM model underestimates the simulated cumulative evaporation and cumulative transpiration due to the inconsistent representation of the SHP in the dry moisture range. We also implemented a two‐step hydro‐PTF (pedotransfer function) into the Hydrus suite that converts the parameters of the original VGM model (from Rosetta) to the corresponding Brunswick variant. In that way, physically comprehensive simulations are ensured if no data on SHP are directly available, but information on physical soil properties (e.g., texture and bulk density) exists.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献