Affiliation:
1. Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
Abstract
AbstractOrganobismuth‐catalyzed transfer hydrogenation has recently been disclosed as an example of low‐valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi‐catalyzed transfer hydrogenation of azoarenes using p‐trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6‐bis[N‐(tert‐butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p‐CF3−C6H4) is observed, and its thermodynamic parameters are established through variable‐temperature NMR studies. Additionally, pKa‐gated reactivity is observed, validating the proton‐coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate‐limiting transition state in which the initial N−H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen‐bonded adduct of azobenzene and 4. These studies guided the discovery of a second‐generation Bi catalyst, the rate‐limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.
Funder
Max-Planck-Gesellschaft
Verband der Chemischen Industrie
H2020 European Research Council
H2020 Marie Skłodowska-Curie Actions
Alexander von Humboldt-Stiftung
Subject
General Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献