Mechanistic Studies on the Bismuth‐Catalyzed Transfer Hydrogenation of Azoarenes

Author:

Moon Hye Won1ORCID,Wang Feng1ORCID,Bhattacharyya Kalishankar1ORCID,Planas Oriol1ORCID,Leutzsch Markus1ORCID,Nöthling Nils1ORCID,Auer Alexander A.1ORCID,Cornella Josep1ORCID

Affiliation:

1. Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany

Abstract

AbstractOrganobismuth‐catalyzed transfer hydrogenation has recently been disclosed as an example of low‐valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi‐catalyzed transfer hydrogenation of azoarenes using p‐trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6‐bis[N‐(tert‐butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p‐CF3−C6H4) is observed, and its thermodynamic parameters are established through variable‐temperature NMR studies. Additionally, pKa‐gated reactivity is observed, validating the proton‐coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate‐limiting transition state in which the initial N−H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen‐bonded adduct of azobenzene and 4. These studies guided the discovery of a second‐generation Bi catalyst, the rate‐limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.

Funder

Max-Planck-Gesellschaft

Verband der Chemischen Industrie

H2020 European Research Council

H2020 Marie Skłodowska-Curie Actions

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrobismuthation: Insertion of Unsaturated Hydrocarbons into the Heaviest Main Group Element Bond to Hydrogen;Journal of the American Chemical Society;2024-01-02

2. Bismuth in Radical Chemistry and Catalysis;Angewandte Chemie International Edition;2023-12-11

3. Bismuth in Radical Chemistry and Catalysis;Angewandte Chemie;2023-12-11

4. Bi-Catalyzed Trifluoromethylation of C(sp2)–H Bonds under Light;Journal of the American Chemical Society;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3