Directing the Selectivity of CO Electrolysis to Acetate by Constructing Metal‐Organic Interfaces

Author:

Rong Youwen12,Liu Tianfu1ORCID,Sang Jiaqi13,Li Rongtan1ORCID,Wei Pengfei1,Li Hefei1ORCID,Dong Aiyi12,Che Li2ORCID,Fu Qiang1ORCID,Gao Dunfeng1ORCID,Wang Guoxiong1ORCID

Affiliation:

1. State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China

2. School of Science Dalian Maritime University 116026 Dalian China

3. University of Chinese Academy of Sciences 100049 Beijing China

Abstract

AbstractElectrochemically converting CO2 to valuable chemicals holds great promise for closing the anthropogenic carbon cycle. Owing to complex reaction pathways and shared rate‐determining steps, directing the selectivity of CO2/CO electrolysis to a specific multicarbon product is very challenging. We report here a strategy for highly selective production of acetate from CO electrolysis by constructing metal‐organic interfaces. We demonstrate that the Cu‐organic interfaces constructed by in situ reconstruction of Cu complexes show very impressive acetate selectivity, with a high Faradaic efficiency of 84.2 % and a carbon selectivity of 92.1 % for acetate production, in an alkaline membrane electrode assembly electrolyzer. The maximum acetate partial current density and acetate yield reach as high as 605 mA cm−2 and 63.4 %, respectively. Thorough structural characterizations, control experiments, operando Raman spectroscopy measurements, and density functional theory calculation results indicate that the Cu‐organic interface creates a favorable reaction microenvironment that enhances *CO adsorption, lowers the energy barrier for C−C coupling, and facilitates the formation of CH3COOH over other multicarbon products, thus rationalizing the selective acetate production.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3