Affiliation:
1. State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu 610065 P. R. China
2. Nanostructures for Electronics & Electromechanics Laboratory, School of Engineering Westlake University Hangzhou 310024 P. R. China
Abstract
AbstractThe growing concern regarding widespread plastic pollution has propelled the development of sustainable self‐healing plastics. Although considerable efforts have been dedicated to fabricating self‐healing plastics, achieving rapid healing at room temperature is extremely challenging. Herein, we have developed an ultra‐fast‐healing glassy polyurethane (UGPU) by designing a hyperbranched molecular structure with a high density of multiple hydrogen bonds (H‐bonds) on compliant acyclic heterochains and introducing trace water to form water bridge across the fractured surfaces. The compliant acyclic heterochains allow the dense multiple hydrogen bonds to form a frozen network, enabling tensile strength of up to 70 MPa and storage modulus of 2.5 GPa. The hyperbranched structure can drive the reorganization of the H‐bonding network through the high mobility of the branched chains and terminals, thereby leading to self‐healing ability at room temperature. Intriguingly, the presence of trace water vapor facilitates the formation of activated layers and the rearrangement of networks across the fractured UGPU sections, thereby enabling ultra‐fast self‐healing at room temperature. Consequently, the restored tensile strength after healing for 1 minute achieves a historic‐record of 26.4 MPa. Furthermore, the high transparency (>90 %) and ultra‐fast healing property of UGPU make it an excellent candidate for advanced optical and structural materials.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献