Deciphering Oxygen‐Independent Augmented Photodynamic Oncotherapy by Facilitating the Separation of Electron‐Hole Pairs

Author:

Hu Xiaoming123,Fang Zhuting4,Sun Fengwei1,Zhu Caijun2,Jia Mingxuan5,Miao Xiaofei3,Huang Lingting1,Hu Wenbo1,Fan Quli3,Yang Zhen1,Huang Wei135ORCID

Affiliation:

1. Strait Institute of Flexible Electronics (SIFE, Future Technologies) Fujian Key Laboratory of Flexible Electronics Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou 350117 China

2. Jiangxi Key Laboratory of Nanobiomaterials School of Materials Science and Engineering East China Jiaotong University Nanchang 330013 China

3. State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China

4. Department of Interventional Radiology Fujian Provincial Hospital Shengli Clinical Medical College of Fujian Medical University No. 134, Dongjie Road Fuzhou 350001 China

5. Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 China

Abstract

AbstractDeveloping Type‐I photosensitizers provides an attractive approach to solve the dilemma of inadequate efficacy of photodynamic therapy (PDT) caused by the inherent oxygen consumption of traditional Type‐II PDT and anoxic tumor microenvironment. The challenge for the exploration of Type‐I PSs is to facilitate the electron transfer ability of photosensitization molecules for transforming oxygen or H2O to reactive oxygen species (ROS). Herein, we propose an electronic acceptor‐triggered photoinduced electron transfer (a‐PET) strategy promoting the separation of electron‐hole pairs by marriage of two organic semiconducting molecules of a non‐fullerene scaffold‐based photosensitizer and a perylene diimide that significantly boost the Type‐I PDT pathway to produce plentiful ROS, especially, inducing 3.5‐fold and 2.5‐fold amplification of hydroxyl (OH⋅) and superoxide (O2⋅) generation. Systematic mechanism exploration reveals that intermolecular electron transfer and intramolecular charge separation after photoirradiation generate a competent production of radical ion pairs that promote the Type‐I PDT process by theoretical calculation and ultrafast femtosecond transient absorption (fs‐TA) spectroscopy. By complementary tumor diagnosis with photoacoustic imaging and second near‐infrared fluorescence imaging, this as‐prepared nanoplatform exhibits fabulous photocytotoxicity in harsh hypoxic conditions and terrific cancer revoked abilities in living mice. We envision that this work will broaden the insight into high‐efficiency Type‐I PDT for cancer phototheranostics.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangxi Province

Natural Science Foundation of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3