Affiliation:
1. Strait Institute of Flexible Electronics (SIFE, Future Technologies) Fujian Key Laboratory of Flexible Electronics Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou 350117 China
2. Jiangxi Key Laboratory of Nanobiomaterials School of Materials Science and Engineering East China Jiaotong University Nanchang 330013 China
3. Department of Tumor Interventional Radiology Clinical oncology school of Fujian Medical University Fujian Cancer Hospital Fuzhou 350014 China
4. Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 China
Abstract
AbstractFluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) has aroused immense attention for biomedical applications, offering exceptional advantages such as ultra‐low photon scattering and increased tissue penetration. Among the NIR‐II‐emitted organic dyes, Boron dipyrromethene (BODIPY), has emerged as a noteworthy candidate. BODIPY, distinguished by its controllable molecular structure and optical properties, outstanding fluorescence quantum yields, high molar absorption coefficients, and remarkable chemical stability, has undergone comprehensive investigation and extensive exploration within the realm of biological theranostics. This work aims to provide a comprehensive summary of the advancements in the development and design strategies of NIR‐II BODIPY fluorophores tailored for advanced biological phototheranostics. Initially, the work elucidates several representative and controllable strategies, concluding the electron‐programming strategy, extension of the conjugated backbone, J‐aggregation strategy, and strategic establishment of activatable fluorophores, which enhance the NIR‐II fluorescence of BODIPY skeletons. Subsequently, developments in NIR‐II fluorescent BODIPY‐based nanoplatforms for biological applications are intricately elaborated. In conclusion, this work outlines future efforts and directions for refining NIR‐II BODIPY to meet evolving clinical demands. It is anticipated that this contribution may provide a feasible reference for the strategic design of organic NIR‐II fluorophores, thereby advancing their potential in future clinical practices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
China Postdoctoral Science Foundation
Natural Science Foundation of Fujian Province
Fujian Normal University
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献