Spheroidization: The Impact of Precursor Morphology on Solid‐State Lithiation Process for High‐Quality Ultrahigh‐Nickel Oxide Cathodes

Author:

Liang Wenbiao12,Zhao Yin2,Shi Liyi23,Wang Zhuyi2,Yuan Shuai2ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai University Shanghai 200444 China

2. Research Center of Nanoscience and Nanotechnology Shanghai University Shanghai 200444 China

3. Emerging Industries Institute Shanghai University Jiaxing, Zhejiang 314006 China

Abstract

AbstractLayered oxides with ultrahigh nickel content are considered promising high energy cathode materials. However, their cycle stability is constrained by a series of heterogeneous structural transformations during the complex solid‐state lithiation process. By in‐depth investigation into the solid‐state lithiation process of LiNi0.92Co0.04Mn0.04O2, it is found that the protruded parts on the surface of precursor particles tend to be surrounded by locally excessive LiOH, which promotes the formation of a rigid and dense shell during the early stage of lithiation process. The shell will hinder the diffusion of lithium and topotactic lithiation within the particles, culminating in spatially heterogeneous intermediates that can impair the electrochemical properties of the cathode material. The spheroidization of the precursor can enhance uniformity in structural evolution during solid‐phase lithiation. Ultrahigh nickel cathodes derived from spherical precursors demonstrate high initial discharge specific capacity (234.2 mAh g−1, in the range of 2.7–4.3 V) and capacity retention (89.3 % after 200 cycles), significantly superior to the non‐spherical samples. This study not only sheds light on the intricate relationship between precursor shape and structural transformation but also introduces a novel strategy for enhancing cathode performance through precursor spheroidization.

Funder

Natural Science Foundation of Shanghai Municipality

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3