Ruthenium Single Atomic Sites Surrounding the Support Pit with Exceptional Photocatalytic Activity

Author:

Tao Yu1,Guan Jianping1,Zhang Jian2,Hu Shouyao1,Ma Runze1,Zheng Huanran1,Gong Jiaxin1,Zhuang Zechao34,Liu Shoujie5,Ou Honghui16ORCID,Wang Dingsheng3ORCID,Xiong Yu1ORCID

Affiliation:

1. Department of Chemistry and Chemical Engineering Central South University Changsha 410083 China

2. Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China

3. Department of Chemistry Tsinghua University Beijing 100084 China

4. Department of Chemical Engineering Columbia University New York NY 10027 USA

5. School of Materials Science and Engineering Anhui University Anhui 230601 China

6. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi An Shi, Xi'an 710049 China

Abstract

AbstractSingle‐metal atomic sites and vacancies can accelerate the transfer of photogenerated electrons and enhance photocatalytic performance in photocatalysis. In this study, a series of nickel hydroxide nanoboards (Ni(OH)x NBs) with different loadings of single‐atomic Ru sites (w‐SA‐Ru/Ni(OH)x) were synthesized via a photoreduction strategy. In such catalysts, single‐atomic Ru sites are anchored to the vacancies surrounding the pits. Notably, the SA‐Ru/Ni(OH)x with 0.60 wt % Ru loading (0.60‐SA‐Ru/Ni(OH)x) exhibits the highest catalytic performance (27.6 mmol g−1 h−1) during the photocatalytic reduction of CO2 (CO2RR). Either superfluous (0.64 wt %, 18.9 mmol g−1 h−1; 3.35 wt %, 9.4 mmol−1 h−1) or scarce (0.06 wt %, 15.8 mmol g−1 h−1; 0.29 wt %, 21.95 mmol g−1 h−1; 0.58 wt %, 23.4 mmol g−1 h−1) of Ru sites have negative effect on its catalytic properties. Density functional theory (DFT) calculations combined with experimental results revealed that CO2 can be adsorbed in the pits; single‐atomic Ru sites can help with the conversion of as‐adsorbed CO2 and lower the energy of *COOH formation accelerating the reaction; the excessive single‐atomic Ru sites occupy vacancies that retard the completion of CO2RR.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3