Spatiotemporal imaging of charge transfer in photocatalyst particles
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
https://www.nature.com/articles/s41586-022-05183-1.pdf
Reference60 articles.
1. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).
2. Lewis, N. S. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat. Nanotechnol. 11, 1010–1019 (2016).
3. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).
4. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).
5. Wang, D. et al. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).
Cited by 248 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prohibiting the electron–phonon coupling effect in tungsten trioxide nanosheet colloid with enhanced photocatalytic antibacterial capacity;Journal of Colloid and Interface Science;2025-01
2. Water adsorption on ferroelectric PbTiO3 (0 0 1) surface: A density functional theory study;Journal of Colloid and Interface Science;2025-01
3. Low oxidation state engineering in transition metal-based interfacial regulation layer accelerates charge transfer kinetics toward enhanced photoelectrochemical water splitting;Applied Catalysis B: Environment and Energy;2024-12
4. Probing charge transfer of NiCo2O4/g-C3N4 photocatalyst for hydrogen production;Journal of Materials Science & Technology;2024-11
5. Inbuilt photoelectric field of heterostructured cobalt/iron oxides promotes oxygen electrocatalysis for high-energy-efficiency zinc-air batteries;Applied Catalysis B: Environment and Energy;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3